non-abelian, soluble, monomial
Aliases: C32⋊1C4≀C2, C4.17S3≀C2, D6⋊S3⋊3C4, (C3×C12).17D4, C32⋊2Q8⋊3C4, C12.31D6⋊8C2, D6.D6.1C2, C2.7(S32⋊C4), (C4×C32⋊C4)⋊6C2, (C2×C3⋊S3).7D4, C3⋊Dic3.7(C2×C4), (C4×C3⋊S3).51C22, (C3×C6).6(C22⋊C4), SmallGroup(288,379)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C32⋊C4≀C2 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C4×C3⋊S3 — D6.D6 — C32⋊C4≀C2 |
C32 — C3×C6 — C3⋊Dic3 — C32⋊C4≀C2 |
Generators and relations for C32⋊C4≀C2
G = < a,b,c,d,e | a3=b3=c4=d2=e4=1, ab=ba, cac-1=a-1, ad=da, eae-1=cbc-1=dbd=b-1, ebe-1=a, dcd=c-1, ce=ec, ede-1=c-1d >
Subgroups: 400 in 74 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, D4, Q8, C32, Dic3, C12, D6, C2×C6, C42, M4(2), C4○D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C4≀C2, C3×Dic3, C3⋊Dic3, C3×C12, C32⋊C4, S3×C6, C2×C3⋊S3, C8⋊S3, C4○D12, C3×C3⋊C8, D6⋊S3, C3⋊D12, C32⋊2Q8, S3×C12, C4×C3⋊S3, C2×C32⋊C4, C12.31D6, C4×C32⋊C4, D6.D6, C32⋊C4≀C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C4≀C2, S3≀C2, S32⋊C4, C32⋊C4≀C2
Character table of C32⋊C4≀C2
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 12 | 18 | 4 | 4 | 1 | 1 | 12 | 18 | 18 | 18 | 18 | 18 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | 1 | -1 | -1 | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | i | i | -i | 1 | 1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | 1 | -1 | -1 | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 2i | -2i | 0 | 1-i | 1+i | -1-i | -1+i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | -2i | 2i | 0 | 1+i | 1-i | -1+i | -1-i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 2i | -2i | 0 | -1+i | -1-i | 1+i | 1-i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 0 | 0 | 2 | 2 | -2i | 2i | 0 | -1-i | -1+i | 1-i | 1+i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 4 | 4 | 2 | 0 | -2 | 1 | 4 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -1 | -1 | 0 | 0 | -2 | 1 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 2 | 2 | 1 | -2 | 1 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 2 | 0 | -2 | 1 | -4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -1 | -1 | 0 | 0 | 2 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ18 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | -2 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | -2 | 0 | -2 | 1 | -4 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ20 | 4 | 4 | -2 | 0 | -2 | 1 | 4 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ21 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -2i | 2i | -1 | 2 | -1 | 2 | 0 | 0 | -i | i | -i | i | complex lifted from S32⋊C4 |
ρ22 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 2i | -2i | -1 | 2 | -1 | 2 | 0 | 0 | i | -i | i | -i | complex lifted from S32⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | -2 | 1 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | √-3 | -√-3 | 0 | 0 | 2i | i | -2i | -i | -√3 | √3 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | -2 | 1 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -√-3 | √-3 | 0 | 0 | -2i | -i | 2i | i | -√3 | √3 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | -2 | 1 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | √-3 | -√-3 | 0 | 0 | -2i | -i | 2i | i | √3 | -√3 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | -2 | 1 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -√-3 | √-3 | 0 | 0 | 2i | i | -2i | -i | √3 | -√3 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 1 | -2 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | i | 2i | -i | -2i | 0 | 0 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 1 | -2 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | -i | -2i | i | 2i | 0 | 0 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 1 | -2 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | i | 2i | -i | -2i | 0 | 0 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 1 | -2 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | -i | -2i | i | 2i | 0 | 0 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | complex faithful |
(5 10 47)(6 48 11)(7 12 45)(8 46 9)(21 26 31)(22 32 27)(23 28 29)(24 30 25)
(1 18 13)(2 14 19)(3 20 15)(4 16 17)(33 41 40)(34 37 42)(35 43 38)(36 39 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 33)(2 36)(3 35)(4 34)(5 30)(6 29)(7 32)(8 31)(9 26)(10 25)(11 28)(12 27)(13 41)(14 44)(15 43)(16 42)(17 37)(18 40)(19 39)(20 38)(21 46)(22 45)(23 48)(24 47)
(1 47)(2 48)(3 45)(4 46)(5 18 10 13)(6 19 11 14)(7 20 12 15)(8 17 9 16)(21 33 23 35)(22 34 24 36)(25 44 32 37)(26 41 29 38)(27 42 30 39)(28 43 31 40)
G:=sub<Sym(48)| (5,10,47)(6,48,11)(7,12,45)(8,46,9)(21,26,31)(22,32,27)(23,28,29)(24,30,25), (1,18,13)(2,14,19)(3,20,15)(4,16,17)(33,41,40)(34,37,42)(35,43,38)(36,39,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,33)(2,36)(3,35)(4,34)(5,30)(6,29)(7,32)(8,31)(9,26)(10,25)(11,28)(12,27)(13,41)(14,44)(15,43)(16,42)(17,37)(18,40)(19,39)(20,38)(21,46)(22,45)(23,48)(24,47), (1,47)(2,48)(3,45)(4,46)(5,18,10,13)(6,19,11,14)(7,20,12,15)(8,17,9,16)(21,33,23,35)(22,34,24,36)(25,44,32,37)(26,41,29,38)(27,42,30,39)(28,43,31,40)>;
G:=Group( (5,10,47)(6,48,11)(7,12,45)(8,46,9)(21,26,31)(22,32,27)(23,28,29)(24,30,25), (1,18,13)(2,14,19)(3,20,15)(4,16,17)(33,41,40)(34,37,42)(35,43,38)(36,39,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,33)(2,36)(3,35)(4,34)(5,30)(6,29)(7,32)(8,31)(9,26)(10,25)(11,28)(12,27)(13,41)(14,44)(15,43)(16,42)(17,37)(18,40)(19,39)(20,38)(21,46)(22,45)(23,48)(24,47), (1,47)(2,48)(3,45)(4,46)(5,18,10,13)(6,19,11,14)(7,20,12,15)(8,17,9,16)(21,33,23,35)(22,34,24,36)(25,44,32,37)(26,41,29,38)(27,42,30,39)(28,43,31,40) );
G=PermutationGroup([[(5,10,47),(6,48,11),(7,12,45),(8,46,9),(21,26,31),(22,32,27),(23,28,29),(24,30,25)], [(1,18,13),(2,14,19),(3,20,15),(4,16,17),(33,41,40),(34,37,42),(35,43,38),(36,39,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,33),(2,36),(3,35),(4,34),(5,30),(6,29),(7,32),(8,31),(9,26),(10,25),(11,28),(12,27),(13,41),(14,44),(15,43),(16,42),(17,37),(18,40),(19,39),(20,38),(21,46),(22,45),(23,48),(24,47)], [(1,47),(2,48),(3,45),(4,46),(5,18,10,13),(6,19,11,14),(7,20,12,15),(8,17,9,16),(21,33,23,35),(22,34,24,36),(25,44,32,37),(26,41,29,38),(27,42,30,39),(28,43,31,40)]])
Matrix representation of C32⋊C4≀C2 ►in GL4(𝔽5) generated by
3 | 0 | 0 | 4 |
3 | 0 | 2 | 2 |
1 | 2 | 4 | 2 |
3 | 0 | 0 | 1 |
2 | 1 | 0 | 0 |
3 | 2 | 0 | 0 |
0 | 3 | 4 | 3 |
2 | 3 | 3 | 0 |
2 | 0 | 1 | 0 |
0 | 0 | 3 | 2 |
0 | 0 | 3 | 0 |
0 | 2 | 3 | 0 |
1 | 1 | 3 | 0 |
2 | 0 | 4 | 1 |
1 | 3 | 1 | 3 |
4 | 2 | 0 | 3 |
3 | 4 | 0 | 0 |
0 | 2 | 3 | 0 |
0 | 2 | 0 | 3 |
0 | 2 | 0 | 0 |
G:=sub<GL(4,GF(5))| [3,3,1,3,0,0,2,0,0,2,4,0,4,2,2,1],[2,3,0,2,1,2,3,3,0,0,4,3,0,0,3,0],[2,0,0,0,0,0,0,2,1,3,3,3,0,2,0,0],[1,2,1,4,1,0,3,2,3,4,1,0,0,1,3,3],[3,0,0,0,4,2,2,2,0,3,0,0,0,0,3,0] >;
C32⋊C4≀C2 in GAP, Magma, Sage, TeX
C_3^2\rtimes C_4\wr C_2
% in TeX
G:=Group("C3^2:C4wrC2");
// GroupNames label
G:=SmallGroup(288,379);
// by ID
G=gap.SmallGroup(288,379);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,64,422,219,100,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^4=d^2=e^4=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,e*a*e^-1=c*b*c^-1=d*b*d=b^-1,e*b*e^-1=a,d*c*d=c^-1,c*e=e*c,e*d*e^-1=c^-1*d>;
// generators/relations
Export